О строении трехмерных поверхностей с метрикой вращения

Борисенко А.А. 1 , *проф.*; <u>Татарко Е.В. 2 </u>, *студ*. 1 Сумский государственный университет, г. Суми 2 Харьковский национальный университет им. В.Н. Каразина, г. Харьков

Многомерная риманова метрика называется метрикой вращения, если она имеет вид $ds^2 = (du^1)^2 + \phi^2(u^1)((du^2)^2 + \ldots + (du^l)^2)$. При этом поверхность, несущая метрику вращения, не обязательно является поверхностью вращения. Тогда возникает вопрос о том, какие условия нужны для того, чтобы подмногообразия с метрикой вращения были многомерными поверхностями вращения.

Рассмотрим двумерное внутренне плоское подмногообразие F^2 в единичной сфере S^3 с радиус вектором $\rho(u^2, u^3) = (g_I(u^2, u^3); g_2(u^2, u^3); g_3(u^2, u^3); g_4(u^2, u^3); g_5(u^2, u^3); g_6(u^2, u^3); g_6(u$

Кривая $\gamma(t)$ подмногообразия F^3 в евклидовом пространстве E^5 называется линией кривизны подмногообразия F^3 , если для любой нормали ξ из нормального пространства $N_{\gamma(t)}F^3$ касательный вектор $\dot{\gamma}(t)$ кривой $\dot{\gamma}(t)$ является главным направлением относительно нормали ξ .

Известно, что первая размерность евклидового пространства, в котором существуют трехмерные подмногообразия с метрикой отрицательной секционной кривизны, равна 5. Доказан следующий результат.

Teopema. Пусть C^3 -гладкое подмногообразие F^3 в евклидовом пространстве E^5 с индуцированной римановой метрикой вращения $ds^2=(du^1)^2+\phi^2(u^1)((du^2)^2+(du^3)^2)$ отрицательной секционной кривизны. Если координатные линии u^1 являются линиями кривизны подмногообразия F^3 , то F^3 является подмногообразием вращения.

Выражаем благодарность Драчу К.Д. за обсуждение результатов.

IMA:: 2014